翻訳と辞書
Words near each other
・ Pusher (boat)
・ Pusher (film series)
・ Pusher (railway station attendant)
・ Pusher (tennis)
・ Pusher (The X-Files)
・ Pusher 3
・ Pusher centrifuge
・ Pusher configuration
・ Pusher II
・ Pusher Love Girl
・ Pusher trailer
・ Pusherman
・ Pusheta Township, Auglaize County, Ohio
・ Pushforward
・ Pushforward (differential)
Pushforward (homology)
・ Pushforward measure
・ Pushihe Pumped Storage Power Station
・ Pushim
・ Pushin Forward Back
・ Pushin' Against a Stone
・ Pushin' Me Away
・ Pushin' On
・ Pushin' Too Hard
・ Pushin' Up Daisies
・ Pushin' Weight
・ Pushing Buttons
・ Pushing Daisies
・ Pushing hands
・ Pushing Hands (film)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pushforward (homology) : ウィキペディア英語版
Pushforward (homology)
In algebraic topology, the pushforward of a continuous function f : X \rightarrow Y between two topological spaces is a homomorphism f_:H_n\left(X\right) \rightarrow H_n\left(Y\right) between the homology groups for n \geq 0.
Homology is a functor which converts a topological space X into a sequence of homology groups H_\left(X\right). (Often, the collection of all such groups is referred to using the notation H_\left(X\right); this collection has the structure of a graded ring.) In any category, a functor must induce a corresponding morphism. The pushforward is the morphism corresponding to the homology functor.
== Definition for singular and simplicial homology ==

We build the pushforward homomorphism as follows (for singular or simplicial homology):
First we have an induced homomorphism between the singular or simplicial chain complex C_n\left(X\right) and C_n\left(Y\right) defined by composing each singular n-simplex \sigma_X : \Delta^n\rightarrow X with f to obtain a singular n-simplex of Y, f_\left(\sigma_X\right) = f\sigma_X : \Delta^n\rightarrow Y. Then we extend f_ linearly via f_\left(\sum_tn_t\sigma_t\right) = \sum_tn_tf_\left(\sigma_t\right).
The maps f_ : C_n\left(X\right)\rightarrow C_n\left(Y\right) satisfy f_\partial = \partial f_ where \partial is the boundary operator between chain groups, so \partial f_ defines a chain map.

We have that f_ takes cycles to cycles, since \partial \alpha = 0 implies \partial f_\left( \alpha \right) = f_\left(\partial \alpha \right) = 0. Also f_ takes boundaries to boundaries since f_\left(\partial \beta \right) = \partial f_\left(\beta \right).
Hence f_ induces a homomorphism between the homology groups f_ : H_n\left(X\right) \rightarrow H_n\left(Y\right) for n\geq0.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pushforward (homology)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.